- / Кассовая тема
Биометрия по лицу: мировая история развития, сферы применения и способ оплаты
А началось все еще до первого полета человека в космос
В 1955 году появляется машинное зрение – научное направление в области искусственного интеллекта и связанные с ним технологии получения изображений объектов реального мира, их обработки и использования. А готовые данные должны использоваться для решения разного рода прикладных задач без участия (полного или частичного) человека.
В 1960-ые годы появляются первые эксперименты в области машинного распознавания лица и первые системы обработки 2D-изображений. Актуальные задачи того времени – спутниковая фотосъёмка, медицинская визуализация, распознавание символов и улучшение фотографий и др.
В этот период Вуди Бледсо, профессор Техасского университета в Остине, создал систему, которая могла вручную получать фотографию лица. Вот как это было:
● на планшете RAND размечали лицо, забивая координаты областей лица: глаза, нос, рот и линия волос – до 46 точек;
● специальный алгоритм крутил/вертел/зумировал полученное изображение – до 22 измерений;
● записанные вручную метрики впоследствии сохранялись в базе данных;
● при введении в систему новой фотографии человека можно получить наиболее похожее изображение через базу данных. С распознаванием лица такая система справлялась в 100 раз быстрее, чем человек.
В 1970-ые годы с ростом доступности компьютерного оборудования развивается концепция машинного построения трёхмерных образов объектов. Позже появляется возможность обрабатывать изображения в реальном времени для некоторых задач, таких как преобразование телевизионных стандартов. Тогда же исследователи Хармон, Голдштейн и Леск сделали ручную систему распознавания лица Бледсо более точной, используя 21 маркер лица, включая толщину губ и цвет волос.
В 1988 году Майкл Кирби и Лоуренс Сирович из Университета Брауна применили подход Eigenface с использованием линейной алгебры для анализа изображений. Для разметки лиц они применяли менее 100 различных значений, доказав, что этого достаточно для точного кодирования изображения лица.
В 1991 году Алекс Пентланд и Мэтью Терк из Массачусетского технологического института усовершенствовали технологию Eigenfaces, задействуя факторы окружающей среды. Им удалось автоматизировать процесс распознавания.
В период 1993-2000х годов Управление перспективных исследовательских проектов при Минобороне США (DAPRA) и Национальный институт стандартов и технологий (NIST) выпустили программу FERET с самой обширной базой лиц — более 14 тыс. изображений. Изначально ее использовали, чтобы находить преступников по всему миру. Затем представили в открытом доступе для стимулирования коммерческого рынка распознавания лиц.
Продолжение в XXI веке: роль США, Китая и России
С 2010 года Facebook начал использовать функцию распознавания лиц, чтобы находить пользователей на публикуемых фото и предлагать их отметить. Это обновление создало шумиху в СМИ, однако не повлияло на имидж и популярность самой социальной сети. А в 2014 году FB запускает сервис DeepFace для распознавания лиц в толпе с точностью 97,25%, что почти соответствует способностям среднего человека (97,53 %). Такого результата удалось достичь благодаря способу построения 3D-модели лица по фотографии.В 2011 году власти Панамы и США запустили совместный проект FaceFirst. Это технология распознавания лиц, которую изначально использовали для пресечения незаконной деятельности в аэропорту Токумен в Панаме. А впоследствии она стала крупнейшей биометрической установкой в аэропорту. В том же году полиция и спецслужбы США начали применять распознавание лиц для опознания трупов, что, в частности, помогло утвердить личность Усамы бен Ладена.
В 2015 году Google представила свою разработку — FaceNet, достигшая рекордной точности в 99,63% благодаря огромному массиву данных, которые собирают сервисы Google. Технологию, в частности, используют в Google Фото для сортировки изображений и автоматических отметок людей на них.
В 2016 году американский ритейлер Amazon, сегодня владеющий сетью магазинов без продавцов и кассиров, начал тестировать систему Just Walk Out. Она включает в себя:
● потолочные камеры, считывающие все перемещения покупателей;
● датчики, устанавливаемые на полках, которые измеряют вес продуктов;
● облачную инфраструктуру Amazon Web Services для обработки данных.
Интересно, что разработчики Amazon утверждают, что приватность не нарушена, так как нет никакого распознавания лица, а используются другие визуальные сигналы: походка, длина конечностей и т.д. Пользоваться системой легко: покупателю нужно скачать приложение Amazon Go, прикрепить к нему банковскую карту и получить QR-код для входа. В марте 2020 года Amazon объявил о продаже Just Walk Out другим торговым сетям.
2 августа 2016 года на конференции в Нью-Йорке Samsung представила новый смартфон Galaxy Note 7 со сканером радужной оболочки глаза, чтобы повысить уровень безопасности доступа к устройству. В самой компании это аргументировали тем, что в отличие от отпечатков пальцев радужную оболочку нельзя дублировать, поскольку она имеет уникальный рисунок. Тогда же платежные системы MasterCard, Visa и другие финансовые организации начинают включать биометрическую аутентификацию платежей. В марте 2017 года китайская компания Baidu запускает платформу Face++ для распознавания лица, которая обещала находить совпадения на фотографиях с вероятностью в 99,77%.
На сегодняшний день сервис получил широкое распространение в Китае. Любопытно, что в отличие от США граждане КНР относятся к технологиям распознавания лица с меньшим недоверием. Можно сказать, они воспринимают это как данность и неотъемлемый элемент повседневной жизни, смирившись с отсутствием частной жизни в своей стране. 1
2 сентября 2017 года компания Apple представила технологию Face ID, заменив дактилоскопический датчик «Touch ID». Всего лишь один взгляд на смартфон и личность подтверждена – iPhone разблокирован, покупка оплачена. Лицо сканируется и сравнивается с ранее записанной структурной картой лица владельца. Секрет успеха – в объединении передовых программных и аппаратных разработок Apple. Вот, что внутри и как это работает:
● Проектор точек. Проецирует на лицо пользователя более 30 000 невидимых инфракрасных точек, по которым потом создается его математическая модель.
● Инфракрасная камера. Считывает точечную структуру лица, создает изображение в инфракрасном спектре и помещает эти данные в специальный модуль процессора.
● Инфракрасный излучатель. Пускает невидимый пучок инфракрасного света на лицо, что позволяет выполнить его точное сканирование даже в полной темноте. Face ID считается самой совершенной на сегодняшний момент технологией распознавания лица. Кроме того, она еще и самообучаемая – запоминает изменения в лице с помощью нейронных сетей в процессоре смартфона.
26 сентября 2018 года на конференции глобальных финансовых технологий Finovate Fall в Нью-Йорке Ак Барс Банк представил технологию оплаты товаров и услуг при помощи лица – Face2Pay.
Основное назначение – совершение покупки или прохода через барьерную область без смартфона, банковской карты и иных традиционных платежных инструментов. Как только пользователь приближается к зоне покупки или контроля, система узнает его по лицу и спишет с карты определенную сумму в рамках лимита или обеспечит свободный проход.
Главное отличие технологии Face2Pay от схожих в том, что она уже интегрирована в платежную инфраструктуру банка.
